
1

14:00 - 15:00 MDT
Mon, Oct. 2 2023

60 minutes
Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

2

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

14:00 - 15:00 MDT
Mon, Oct. 2 2023

60 minutes
Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

3

If you’ve been programming C++
for many years -- please provide
suggestions, analogies, and other
useful ways to think about
functions now or in the future!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

4

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in Boston,
Massachusetts.

○ I teach courses in computer systems, computer graphics, and game engine development.
○ My research in program analysis is related to performance building static/dynamic analysis

and software visualization tools.

● I do consulting and technical training on modern C++, DLang,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything in computer
science under the domain of computer graphics, visualization,
concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training at courses.mshah.io and

www.youtube.com/c/MikeShah
5

http://www.mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2023/cppcon/functions

6

https://github.com/MikeShah/Talks/tree/main/2023/cppcon/functions

Abstract
Functions are one of the first things programmers learn, granting you the ultimate power to 'reuse' code and build
modular programs. In this talk, we are going to provide an overview of functions from the start to the end, on the
various powers that are given to us from the ground up. Consider this talk your one stop for learning all of the great
things about functions!

We'll start with a basic function example, identifying the function signature and basic abilities of a function. Then we
are going to view this function again from the perspective of assembly (using compiler explorer) to show you how a
function is structured. From the assembly view, we will then observe that functions have addresses (they must after
all!) and that we can store functions in pointers. We'll take a brief aside to show you how modern C++ also gives us
the convenient std::function. Functions need not always be 'global' building blocks of our programs, the next step in
our journey will be to see how we can have functions at local scope (e.g. lambda's) and how they can be used (and
oftentimes in handy ways in the STL). Ah, intrigued are you? We're not quite done! Now with building blocks such as
lambda's (and related functors) we can utilize function composition to really unlock the power of functions. Towards
the end of this talk, we will talk about grouping related functions (into namespaces) and as member functions in
classes. Within our discussion of functions in classes, we'll touch on virtual functions, static functions, and operator
overloading. We'll circle back to where we began on these topics, again showing you the assembly. At the end of this
talk, you will have had FUN with functions (I couldn't resist...but you will see the complete C++ picture of functions).

The abstract that you read and enticed you to join me is here!

7

Goal(s) for Today

8

Back to Basics: C++ Tour of Functions

● This talk part of the Back to Basics
track in which we revisit fundamental
ideas of programming and C++.

○ Today we will be talking about Functions
■ We’ll start from the basics (what is

a function) and ramp up to more
specific C++ usage of functions
towards the end.

https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIyLTA1L2pvYjcxMC0wNTMuanBn.jpg

9

https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIyLTA1L2pvYjcxMC0wNTMuanBn.jpg

Functions

A familiar term -- perhaps from your math class?

10

Mathematical Functions (f(x)=x) (1/2)

11

● Functions on graphs are one domain many
begin to think of the term function.

○ A function takes 0 or more inputs
■ f(x) means ‘x’ is the input representing a real

number
○ Based on the inputs, an output is generated

(dependent variable)
■ In the case of: f(x) =x we return ‘x’

● Piecewise functions get more interesting
because we can add conditions

○ Observe f(x) is evaluated with x2 when x>0.
○ Otherwise, we generate a value of -1

● In programming languages:
○ We have quite a lot of expressiveness in regards to

how we express a functions operations!

Mathematical Functions (f(x)=x) (2/2)a

12

● Functions on graphs are one domain many
begin to think of the term function.

○ A function takes 0 or more inputs
■ f(x) means ‘x’ is the input representing a real

number
○ Based on the inputs, an output is generated

(dependent variable)
■ In the case of: f(x) =x we return ‘x’

● Piecewise functions get more interesting
because we can add conditions

○ Observe f(x) is evaluated with x2 when x>0.
○ Otherwise, we generate a value of -1

● In programming languages:
○ We have quite a lot of expressiveness in regards to

how we express a functions operations!

Common Math Functions (1/2)

● As a start, as you may expect,
languages like C++ provide in the
standard library many common
functions for us.

13

https://en.cppreference.com/w/cpp/numeric/math

https://en.cppreference.com/w/cpp/numeric/math

Common Math Functions (2/2)

● As a start, as you may expect,
languages like C++ provide in the
standard library many common
functions for us.

14

https://en.cppreference.com/w/cpp/numeric/math

Functions in programming
languages are used to

express math and more
exciting ideas!

https://en.cppreference.com/w/cpp/numeric/math

Origin Story: A Journey of Discovery

The magic and power of functions!

15https://www.thegamecreators.com/product/dark-basic-pro-open-source

https://www.thegamecreators.com/product/dark-basic-pro-open-source

Origin Story:Let’s Give some Credit

16

● I started my journey in various
BASIC programming languages

● Dark Basic Pro (DBP) (a game
engine and BASIC programming
language) was instrumental in my
start in getting excited about
programming

○ (And later informed my decision to study
computer science)

● I can still remember reading the
programming manuals that came
with my installation CD

A Monumental Moment! (1/3)

17

● I remember learning about loops
○ (Using goto and do/loop)

■ Wow -- I can save myself repeating
typing of code!

A Monumental Moment! (2/3)

18

● I remember learning about loops
○ (Using goto and do/loop)

■ Wow -- I can save myself repeating
typing of code!

● I also remember finding a giant list of
interesting graphics functions

○ Neat -- something different than the
math functions I’m learning in school

■ Sounds like I can do some
interesting stuff!

A Monumental Moment! (3/3)

19

● I remember learning about loops
○ (Using goto and do/loop)

■ Wow -- I can save myself repeating
typing of code!

● I also remember finding a giant list of
interesting graphics functions

○ Neat -- something different than the
math functions I’m learning in school

■ Sounds like I can do some
interesting stuff!

Note: Loops and functions are helping achieve code
reuse, slightly different abstractions, but both serving
as building blocks to implement algorithms.

Example Bitmap Functions

● All of these functions are related to
operating on ‘bitmap images’ -- they
are a provided common set of
functions

○ Load Bitmap Filename
○ Load Bitmap Filename, Bitmap Number
○ Set Current Bitmap Bitmap Number

■ etc.

20

A Monumental Moment! (3/3)

21

● Loops and functions are somewhat related --
both help us reuse blocks of code for
computation

● All of these functions are related
to operating on ‘bitmap images’
-- they are a provided common
set of functions

○ Load Bitmap Filename
○ Load Bitmap Filename, Bitmap

Number
○ Set Current Bitmap Bitmap Number

■ etc.

Again, from the
manual --
keying in on this
insight that
functions are a
way to group
related code

More Insights

22

Wow! I can write my own functions?

The limit is our imagination (and perhaps RAM :))

Capturing a Few Fundamental Ideas From my Origin Story

● From my initial discovery of functions -- I found a few interesting facts about
functions and how to think about them.

○ Let’s explore further!

23

Functions
An Abstraction for Writing Reusable and Modular Code

At the very minimum -- “a command that returns a value”

24

General Purpose of a Function in a programming language (1/2)

25

● Some functions purely run a routine of
code -- no return value.

○ prompt() on the right is an example
■ void is the return type when nothing is

returned.
○ Note: Other languages sometimes distinguish

explicitly and name these procedures or
subroutines

● Some functions compute a new value
from 0 or more inputs.

○ int square(int x) on the right is an
example function

○ std::rand is an example that takes no
inputs and produces an output.

● Sometimes this means muting a given
input and/or output

○ i.e. transforming data

https://en.cppreference.com/w/cpp/numeric/random/rand

General Purpose of a Function in a programming language (2/2)

26

● Some functions purely run a routine of
code -- no return value.

○ prompt() on the right is an example
■ void is the return type when nothing is

returned.
○ Note: Other languages sometimes distinguish

explicitly and name these procedures or
subroutines

● Some functions compute a new value
from 0 or more inputs.

○ int square(int x) on the right is an
example function

○ std::rand is an example that takes no
inputs and produces an output.

● Some functions mutate a given input
and/or output

○ i.e. transforming data

https://en.cppreference.com/w/cpp/numeric/random/rand

Function Anatomy
The pieces that make up a function

27

Function Basics - Parts of a Function (1/6)

28

● Let’s take a look at how to
create a function, and the
different components of a
function.

Function Basics - Parts of a Function (2/6)

29

Functions must have a
name:

The name should describe
‘what’ the function is doing
at a minimum

Some naming rules:
● Functions names must start with a letter or underscore.
● Note: ‘Usually’ names that begin with an underscore are

reserved for something special -- the underscore
intentionally making it harder to type.

Function Basics - Parts of a Function (3/6)

30

The next part of a function
are the parameters of the
function (i.e. the ‘input’)

Functions can have zero or
more inputs.

This function has exactly
one parameter of type
std::string

Notes on function parameters:
● Functions names must start with a letter or underscore.
● Note: Sometimes the term parameter and argument ge

mixed up
○ parameters are part of the definition
○ arguments are the values we supply when we

actually use the function.

Function Basics - Parts of a Function (4/6)

31

Next we have the ‘return
type’ -- this tells us the
type of the value returned.

Functions return at most 1
value (The type is ‘void’ if
we return no values). Notes on return values:

● There are a few ways to get more than 1 value returned
from a function:

○ We could return an aggregate type (e.g. struct)
containing multiple values

○ We could define parameters (very cautiously) that
allow us to hold a result

● Another choice is to return std::optional -- this
means 0 or 1 values are returned.

https://en.cppreference.com/w/cpp/utility/optional

Function Basics - Parts of a Function (5/6)

32

The function body (between the
{}’s) is where we do the actual
work.

This is where we define the
implementation of ‘how’ the
function achieves its goal.

Where the ‘goal’ or ‘action’ of the
function is well described by the
function name.

Local variables declared in the
function body follow normal
scoping rules.

Notes on function body:
● Later on we’ll see that the function body usually is

defined in a source (.cpp) file.
○ We generally do not put the implementation of a

function body in the header (.hpp) file.

Function Basics - Parts of a Function (6/6)

33

The combination of the function
name and the parameters
make up what is known as a
‘function signature’

When we use a function (a.k.a.
‘call a function’), the
combination of the name and
arguments we provide will call
our function

Notes on Function Signature:
● The name and arguments in combination call a specific

function.
○ For example:

■ LoadBitmapFile(“./images/cpp.bmp”);
■ This function call jumps to execute function with

‘some sort of valid’ string/char array version of
our function (more on that later...)

(Aside on compiling in debug) Occasional - Gotcha!

34

● Depending on your compiler
or IDE environment -- if you
compile your source with a
function that lacks a ‘return’
statement -- it may still work
○ That includes if there

exist multiple return
paths.

● Don’t trust this however --
we need to have a return
statement if we are
expecting a result.

● Notes on Debugging:
○ Your compiler generally should issue a warning if

there is a missing return
■ Listen to those warnings!

??? // no return

Congratulations -- We Understand the Pieces of a Function

35

That’s really all there
is to the basics!
● Return Type
● Function Signature

○ Descriptive Name
○ Parameters

● Function Body
● Stay tuned for more!

Function Call

What happens in the machine when we call a function?

36

Function Calls - From the Machine Viewpoint (1/5)

37

I think it’s useful to know what happens in the machine
when we call a function

So let’s work with a simple ‘add(int, int)’ function as
shown below.

Function Calls - From the Machine Viewpoint (2/5)

38

● Simple program focusing on an ‘add’ function.

Function Calls - From the Machine Viewpoint (2/

39

● When we call a function in C++
○ At the assembly level is is replaced with a ‘call’ instruction.
○ Note the ‘addii’ portion of the call you can kind of figure out the

function signature (i.e. add(int,int))

Function Calls - From the Machine Viewpoint (2/

40

● Note that we also have to handle the arguments that we provide.
○ We either need to reference them for somewhere, or ‘copy’ (the

movl instruction) data into registers.
○ Again, you can see corresponding $2 and $7

Function Calls - From the Machine Viewpoint (2/

41

● Exploring the assembly a bit more -- you’ll
see the label for our add function.
○ The rest of our function body is then

implemented.
○ Including copying the arguments
○ (and also a ‘ret’ to return to our callsite)

Recap: Machine Viewpoint

● The point of that exercise is for you
to see when we call a function:

○ We usually jump somewhere in the
code.

■ This at a minimum means we
need to store a return address

■ We also may need to copy or
otherwise access arguments.

■ The combination of the
arguments and return address
make up part of the stack frame

● (Note: local variables in
function body are also part
of stack frame)

42

Can generate assembly yourself from compiler:
g++ add.cpp -S

Or otherwise a nice interactive tool for exploring assembly:
https://godbolt.org/z/qdEc3G737

https://godbolt.org/z/qdEc3G737

Recursive Function Call

Revisiting Functions with Recursion

43

(Review) Calling functions within functions (Call stack)

● When you call a function recall that
the arguments are copied and the
return address.

○ Any local variable are also stored on the
call stack as well.

● If a function calls another function,
yet again, more functions are
placed on the call stack.

○ Understanding this can be useful for
understanding how information moves
through your C++ programs.

○ (It’s also very useful for debugging!)

44
https://en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack

Recursion Example 1

● C++ supports recursive calls to
functions

● Here’s an example of computing
factorial recursively

○ Note: We can also see that we have
multiple returns paths in factorial

■ This is perfectly fine as long as
every path the function may exit
returns an integer.

45

Recursion Example 1 - Refactored

● In that last example, I caught myself
copying & pasting the ‘std::cout’ line
several times.

○ There’s a general principle called ‘Don’t
Repeat Yourself’ (DRY)

● So I couldn’t help myself but to
refactor the code to make it a little
cleaner.

○ This is our motivation for functions as
well...modular pieces of code so we don’t
have to repeat ourselves!

46
Exercise: Try removing the loop and using iota
or generate_n

Scope of Variables (1/2)

● Something else we want to keep in
mind is the scope (or lifetime) of
variables in functions.

○ Stack allocated variables scope is defined
by the left and right curly braces{}

● See example on the right
○ Note: Sometimes we talk about this in

terms of when the ‘variable’ is alive or ‘in
scope’

47

Scope of Variable Symbol Name is local to functions

● It’s worth explicitly pointing out that
there are ‘different x variables’ in this
code snippet

● Observe ‘square’ is using the
parameter name ‘x’ at line 16.

○ This is fine because the scope of ‘x’ is
local to each respective function.

● Thus ‘x’ is a local variable in each
function.

○ (Thus we can reuse the name at line 23)

48

Creating Libraries with Functions
Where are they stored?

How are they organized?

49

Functions are part of our code

50

● We can see this from our previous dive into assembly
○ Functions have an ‘address’ where they are stored in memory.

■ This means we can take the ‘address’ of a function
● (e.g. &add).

■ But before we get into that idea -- I want to show an
example of how functions get organized in .cpp and .hpp
files.

Function Declaration (1/2)

● Observe at line 5 we have a
‘Function Declaration’

○ The includes the function signature
and return type

○ There is no ‘body’ of the function
● The purpose of providing a

function declaration in this case is
known as a forward declaration

○ We must parse our file from
top-to-bottom -- thus forward
declarations allow the use of
add(7,2) to compile without issue.

○ So long as at the link stage of
compilation we find a definition , we
will successfully build a program. 51

Function Declaration

● Observe at line 5 we have a
‘Function Declaration’

○ The includes the function signature
and return type

○ There is no ‘body’ of the function
● The purpose of providing a

function declaration in this case is
known as a forward declaration

○ We must parse our file from
top-to-bottom -- thus forward
declarations allow the use of
add(7,2) to compile without issue.

○ So long as at the link stage of
compilation we find a definition , we
will successfully build a program. 52

A forward declaration is effectively a
‘promise to the compiler and/or linker’ that
you will in fact find the function definition
before everything is assembled.

Creating Libraries (1/4)

● To the right I’m going to reveal a complete
program separated out into three files

○ The header (add.hpp)
■ Provides the forward declarations for our

function
■ At the linking stage, we’ll need an

implementation before we can use it.
○ The source for add.cpp

■ Provides the implementation
■ Note that the add.cpp also includes the

add.hpp -- this is effectively the forward
declaration being pasted in

○ Finally, the main.cpp
■ We #include “add.hpp” which gives us

access to use add.cpp
■ So long as we link in the implementation of

add (from add.cpp, which will be an add.o
file), we can use the add function.

53

Creating Libraries (2/4)

● To the right I’m going to reveal a complete
program separated out into three files

○ The header (add.hpp)
■ Provides the forward declarations for our

function
■ At the linking stage, we’ll need an

implementation before we can use it.
○ The source for add.cpp

■ Provides the implementation
■ Note that the add.cpp also includes the

add.hpp -- this is effectively the forward
declaration being pasted in

○ Finally, the main.cpp
■ We #include “add.hpp” which gives us

access to use add.cpp
■ So long as we link in the implementation of

add (from add.cpp, which will be an add.o
file), we can use the add function.

54

Creating Libraries (3/4)

● To the right I’m going to reveal a complete
program separated out into three files

○ The header (add.hpp)
■ Provides the forward declarations for our

function
■ At the linking stage, we’ll need an

implementation before we can use it.
○ The source for add.cpp

■ Provides the implementation
■ Note that the add.cpp also includes the

add.hpp -- this is effectively the forward
declaration being pasted in

○ Finally, the main.cpp
■ We #include “add.hpp” which gives us

access to use add.cpp
■ So long as we link in the implementation of

add (from add.cpp, which will be an add.o
file), we can use the add function.

55

Creating Libraries (4/4)

● To the right I’m going to reveal a complete
program separated out into three files

○ The header (add.hpp)
■ Provides the forward declarations for our

function
■ At the linking stage, we’ll need an

implementation before we can use it.
○ The source (add.cpp)

■ Provides the implementation
■ Note that the add.cpp also includes the

add.hpp -- this is effectively the forward
declaration being pasted in

○ Finally, the main.cpp
■ We #include “add.hpp” which gives us

access to use add.cpp
■ So long as we link in the implementation of

add (from add.cpp, which will be an add.o
file), we can use the add function.

56

Our First Library of Functions

● We have effectively built a (tiny) library
at this point

● Separating functions into separate files
has a few advantages

○ Reuse your functions in other projects
■ (While maintaining and testing one

version)
○ Hide your implementation details from users
○ Potentially speed up compilation
○ Utilize only the functionality you need by

breaking up source into modules of related
functions

57

Separate Compilation of our Function
Library
● Observe to the below an example of

compiling our source (.cpp) files
individually

● Here is an example of separate
compilation and linking together the
object files (.o) together to build our final
executable.

58

(Quick Detour) Taking a deeper look (1/2)

● Various tools allow
us to ‘inspect’ object
code such as
objdump -- we can
see the functions
available to ensure
they are there.

○ What I am displaying
to you is we have a
global (‘g’) function
(‘F’) that has been
identified.

59

Notes on Library Building:
● If today is your first day with functions -- ignore these details

○ Bookmark this slide and revisit it at a later date when you
build your first or second library :)

(Quick Detour) Taking a deeper look (2/2)

● If we add the ‘static’
qualifier to our function --
this effectively makes the
function private to that
source file.

○ That means this is only
callable within the ‘.cpp’ file
it is implemented in.

○ You can take a peek at the
linker error on the
bottom-right

● Why?
○ The reason you might want

to do this, is if you have
other functions that help
you ultimately implement
the function you want to
expose to a user.

60

Functions

How might we group related functions together?

61

Grouping Functions Together (1/3)

● At some point you’ll want to collect
related files into a single source file --
that is probably a good idea!

○ So at the least, we can group files together in
one file

● A C-like strategy is to add a uniform
prefix to each function name.

○ That is possibly reasonable if you foresee
your functions being used in many different
languages.

62

Grouping Functions Together (2/3)

● At some point you’ll want to collect
related files into a single source file --
that is probably a good idea!

○ So at the least, we can group files together in
one file

● A C-like strategy is to add a uniform
prefix to each function name.

○ That is possibly reasonable if you foresee
your functions being used in many different
languages.

63

Grouping Functions Together (3/3)

● A better C++ approach is to group
functions together in a namespace

○ This makes it easy to avoid naming collisions
■ (Someone else probably wrote an ‘add’

function at some point in a large
enough project)

○ Refactoring becomes easier as well.
■ If nested namespaces were to get too

long -- at a local scope you can use:
● using namespace mike;
● (Note: I recommend avoiding

‘using namespace’ at a global
scope)

64

(Aside) Example Usage

● And here’s a full example if you like:

65

(Aside: Modules)

● Modules in C++ 20 should help resolve
some of the organization of source files.

○ Note: ‘export’ appears to be a better way than
the previous ‘static’ trick I showed you to
determine what functions are exposed.

● Note: I am not yet a C++ modules expert,
but I will learn more as compiler support
continues advancing.

66

Example from:
https://en.cppreference.com/w/cpp/language/modules

https://en.cppreference.com/w/cpp/language/modules

Function (Member Functions)

Another way to ‘group’ functions -- Object-Oriented Programming

67

Object-Oriented (Actions + Attributes)

● Beyond grouping functions into namespaces
● We can group related functions and data

together to form a new user-defined data
type -- an object

○ Typically we call the functions ‘member functions’
(other languages may call these ‘methods’)

■ Member functions perform the ‘work’ based on
arguments provides, and possibly internal
state (member variables(

● Note: member variables sometimes also
called either fields or attributes.

68

Virtual Functions (or Virtual Member Functions) (1/3)

● Member Functions role become interesting
when we start talking about inheritance.

● Member Functions can be ‘overridden’ in
derived classes.

○ Observe the ‘virtual’ keyword on line ‘6’ signaling
that the function may be overridden

○ Observe the ‘override’ keyword at line ‘16’ which
specifically indicates a function will be overridden.

○ In the image.cpp file (bottom-right image) you will
then see the implementation provided for the new
derived class

69

Virtual Functions (or Virtual Member Functions) (2/3)

● When calling a specific ‘::LoadImage’
member function, the correct implementation
will be called based on the allocated object.

○ Classes and structs containing virtual functions
have a ‘virtual table’ of pointers to functions.

70

Bitmap vTable

Image vTable

LoadImage

LoadImage

Image::LoadImage

Bitmap::LoadImage

All Functions

Virtual Functions (or Virtual Member Functions) (3/3)

● When calling the ‘LoadImage’ member
function, the correct implementation will be
called.

○ Again -- because classes and structs with virtual
functions have a ‘virtual table’ of pointers to
functions.

71

Bitmap vTable

Image vTable

LoadImage

LoadImage

Image::LoadImage

Bitmap::LoadImage

All Functions

For a full treatment of
Object-Oriented
Programming check out the
following videos or otherwise
my C++ collection on
YouTube

Going Further:
● Pure Virtual Functions

○ (For interfaces)
● Friend functions
● Static member functions

https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L

Function Composition

Functions are our building blocks

72

Functions Compose (1/3)

● Here’s a somewhat silly
example of composing
with functions.

○ That is to say, we are using
the result of one function as
an argument into another.

○ We know we already have
‘+’ and ‘*’ operators for
primitive types

■ But this type of code is
still useful

■ What if ‘add’ and ‘mul’
check for integer
overflow for example?

73

Functions Compose (2/3)

● Many ways to think about
this implementation

○ The point being however --
hopefully you think in terms
of functions as building
blocks that you can
compose together

● Brief aside -- for advanced
users -- yes, you can use a
variadic template and
evaluate this at
compile-time in that
manner.

74

Functions Compose (3/3)

● Many ways to think about
this implementation

○ The point being however --
hopefully you think in terms
of functions as building
blocks that you can
compose together

● Brief aside -- for advanced
users -- yes, you can use a
variadic template and
evaluate this at
compile-time.

75

Something that becomes
more apparent here -- is that
our functions are very simple.

Simple -- but it also looks like
we may have all the
information at compile-time to
compute the result.

C++ 11 introduced just that
feature -- constexpr

constexpr Functions

Compute at compile-time

76

constexpr return value

● We can qualify our return type of a
function with ‘constexpr’

● This makes it possible (but not
necessarily guaranteed) that we can
evaluate an expression (i.e. return
value of a function, a computation,
etc.) before your code runs!

○ From cppreference
○ “The constexpr specifier declares that it is possible to

evaluate the value of the function or variable at
compile time. Such variables and functions can then
be used where only compile time constant
expressions are allowed (provided that appropriate
function arguments are given).”

77

https://en.cppreference.com/w/cpp/language/constexpr

https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constant_expression
https://en.cppreference.com/w/cpp/language/constexpr

constexpr functions (0/3)

● We can evaluate
some functions
at compile-time
with ‘constexpr’

○ This effectively
makes our
program to the
right a ‘no-op’
and it just
returns 28.

● The key is the
‘constexpr’ used
on the return
type qualifier.

78

https://godbolt.org/z/hhxcWj6Gq

We can actually improve this
particular function we
previously looked at with our
new ‘constexpr’ knowledge

https://godbolt.org/z/hhxcWj6Gq

constexpr functions (1/3)

● We can evaluate
some functions
at compile-time
with ‘constexpr’

○ This effectively
makes our
program to the
right a ‘no-op’
and it just
returns 28.

● The key is the
‘constexpr’ used
on the return
type qualifier.

79

https://godbolt.org/z/hhxcWj6Gq

https://godbolt.org/z/hhxcWj6Gq

constexpr functions (2/3)

● We can evaluate
some functions
at compile-time
with ‘constexpr’

○ This effectively
makes our
program to the
right a ‘no-op’
and it just
returns 28.

● The key is the
‘constexpr’ used
on the return
type qualifier.

80

https://godbolt.org/z/hhxcWj6Gq The purpose of this slide is again to show you -- if I break
my program ino small composable pieces, it becomes more
clear when I can make something constexpr.

https://godbolt.org/z/hhxcWj6Gq

constexpr functions (2/2)

● We can evaluate
some functions
at compile-time
with ‘constexpr’

○ This effectively
makes our
program to the
right a ‘no-op’
and it just
returns 28.

● The key is the
‘constexpr’ used
on the return
type qualifier.

81

https://godbolt.org/z/hhxcWj6Gq● Note that making something ‘constexpr’ also implies it is inline -- you have the computed value!
● Core Guideline(s):

○ https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-de
clare-it-constexpr

○ https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

https://godbolt.org/z/hhxcWj6Gq
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-declare-it-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-declare-it-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

constexpr functions (2/2)

● We can evaluate
some functions
at compile-time
with ‘constexpr’

○ This effectively
makes our
program to the
right a ‘no-op’
and it just
returns 28.

● The key is the
‘constexpr’ used
on the return
type qualifier.

82

https://godbolt.org/z/hhxcWj6Gq● By the way -- this is essentially all of the assembly code for our program
○ Note there’s no call to our ‘dotProduct’ function -- just moving the value 28

into a register :)

https://godbolt.org/z/hhxcWj6Gq

(Aside) pure functions

● Functions that don’t have side effects (i.e. immutable functions) in the
argument or return value are known as pure functions

○ These are good, because they are not dependent on run-time ‘state’, all values could be
known at compile-time

○ You can think of pure functions as most of the common math functions you started out learning
in school

■ The same inputs generate the same output values.
■ Note: I believe many cmath functions in either C++23/26 are becoming constexpr

83

https://godbolt.org/z/hhxcWj6Gq

https://godbolt.org/z/hhxcWj6Gq

Function Parameters
Understanding pass-by-value and pass-by-reference (and ‘const’)

84

Quick Check: What do you think the value of x will be? (1/2)

● What will the value of x be?

85

Quick Check: What do you think the value of x will be? (2/2)

● What will the value of x be?

● Hmm, why is this? (Next slide!)

86

Pass by Value (Also known as pass by ‘copy-value’)

● In C++ we have control over what
happens when we pass in a variable
into a function.

● At line 24, we actually get a ‘copy’ of
‘x’.

87

(Review) & Operator (‘Address of function’)

● The ampersand operator (‘&’) in C++
retrieves the address of a variable in
memory.

● We can use it to figure out where
exactly in memory (i.e. the address)
our variables are located.

○ You can thus see below, the hexadecimal
address in memory of ‘x’

88

(Aside) Using & to understand pass-by-value

● Notice below that the addresses are
different

● Thus, if the address is different, than
when we modify

89

(Aside) Quick Tip for ‘&’

● & is an operator (i.e. function) for getting the ‘address of’ a variable or function
that exists.

90

Pass by Reference (1/2)

● In C++, if you want to modify the value,
you can instead ‘pass by reference’

● Notice very subtly the function signature
at line 16

○ void func(int& x)
■ Think of the int& as a ‘reference type’

○ The ampersand states that we are passing
an actual reference to something that exists.

○ The parameter is thus an ‘alias’ to something
that exists.

○ Now the actual ‘x’ in memory will be modified

91

Pass by Reference (2/2)

● In C++, if you want to modify the value,
you can instead ‘pass by reference’

● Notice very subtly the function
signature at line 16

○ void func(int& x)
■ Think of the int& as a ‘reference type’

○ The ampersand states that we are passing
an actual reference to something that exists.

○ The parameter is thus an ‘alias’ to something
that exists.

○ Now the actual ‘x’ in memory will be modified

92

Why Pass by Reference?

● Reason 1:
○ Sometimes we want to modify the actual

variable being passed in!
● Reason 2:

○ We avoiding making a copy of our data
■ You’ll notice the performance if you

pass big or expensive to copy data
structures

■ (e.g. a vector of 10,000,000 big
objects would all have to be copied)

● Reason 3:
○ It’s a bit safer than a pointer -- meaning

it’s a lot harder to get a NULL value

93

const reference parameter

● Just like when we declare variables
with ‘const’ we can also do so for our
function arguments.

● In this case, we can:
○ const int &x
○ This means we cannot modify that value

of x
● If you try to run this example, it will

not let you, because you are trying to
reassign the value of the int that you
passed in the function.

94

const reference parameter - Why would we do this?

● Again we pass-by-reference to avoid
a copy

○ The ‘const’ part is a ‘security’ (i.e.
contract) that ensures that whatever data
we are passing into that function will not
be mutated (i.e. change its state in
anyway).

● As we work with bigger data
structures, this is more important!

95

Other Tips -- Take a look at std::span

● Pass-by-Pointer (line 5) is still pass-by-value
○ (i.e. making a copy of the pointer)
○ Passing in a pointer copies the pointer, but both

pointers point to the same underlying address -- thus
we can modify the value.

● Prefer in Modern C++ codebases however to
use std::span (C++20) as an argument in your
functions if you do have to pass a pointer and a
size

○ std::span is a pointer and a length
○ Can handle dynamic data structures as well.

96

https://en.cppreference.com/w/cpp/container/span

Function Polymorphism and Overloading
Function with the same name, with potentially a different implementation
(often because of different parameter types)

97

Function polymorphism

● In C++, we can reuse the same name
for multiple functions where the
parameters are different.

○ Note: In languages like C we have to
uniquely name our functions

● When we make a call to the function
(i.e. square), C++ can automatically
deduce which function to call based
on the data types or arguments used.

○ This is a type of function polymorphism

98

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)#:~:text=A%20function%20that%20can%20evaluate,which%20such%20specializations%20are%20made.

(Aside) Argument Dependent Lookup (ADL)

● C++ compilers perform something
known as argument-dependent lookup
(ADL) when resolving which function

○ https://en.cppreference.com/w/cpp/language/
adl

○ You can read through this if you want a bit
more detail on how function calls are
resolved (or which version of square will be
called if we pass in a ‘double’)

○ ADL specifically helps us figure out which
functions to call within scope.

99

https://en.cppreference.com/w/cpp/language/adl
https://en.cppreference.com/w/cpp/language/adl

Function Overloads

100

Sometimes it’s useful to provide
different ‘types’ and different
number of parameters into
functions but use the same
function name.

This is known as function
‘overloading.

Here is an example with two
functions with the same name,
but different parameter lists.

Function Default Parameters

● Note: We can also provide default
parameters to our functions when
it makes sense

○ i.e. if we have some option that is not
always needed, then provide a default
value.

○ This is sometimes preferred versus
creating lots of different functions -- as
it may be preferable to have one
implementation.

○ There’s a better tool for specific
implementations if the implementation
is dependent on types however (next
slide on templates!)

101

Function Templates

● Templates are a mechanism
for generating code and
working with generic types.

● Templates (and Concepts)
are a big topic in C++

○ I can again refer you to talks
from the past and this current
conference on the topic.

102

Functions & State
Understanding lifetime and state in function-like functions

103

Functions and State

104

● No State
○ We’ve seen some previous examples of ‘pure’ functions (using constexpr)
○ These functions compose well

● State Changes
○ We’ve seen some functions that allow for mutation
○ (passing by reference or pass-by-pointer) that allow for mutation.

● Holding State
○ We have seen how objects can be used to hold state and even change behavior of object your

dynamic dispatch (run-time type polymorphism)

Extending local lifetime with ‘static’

● There is a way to ‘extend’ the
lifetime of a variable within a
function

○ The variable is effectively a global
variable

○ The scope is still within the function
however.

● This means that when you call a
function, it will retain its value.

● This is done with the keyword
‘static’

○ Notice how ‘counter’ does not get
redeclared each time.

○ It is allocated exactly once in the
compiled code, and C++ retains the
local variable ‘counter’ in foo(). 105

Functors (Function Objects)

● Functors are ‘function objects’
○ You are ‘allocating’ some separate

persistent memory to hold ‘state’ for
your function

■ This memory lives (i.e. is in
scope) for the duration of the
objects lifetime, as opposed to
the call stack.

○ This way you can ‘save’ state within
specific invocations of your functor.

106

Evolving Functors to ...

● Here’s another example of a
‘functor’ that ‘captures’ (i.e. stores)
the last value in a member variable
called lastResult.

○ Again, this code is perfectly reasonable
○ But how ‘modifiable is this functor?

■ What if I want similar functors?
■ What if I don’t want the scope to

be ‘global’ ?

107

Lambda’s (Effectively Functors behind the scenes)

● Lambda’s are ‘unnamed’ functions.
○ Lambda’s are a convenient way for us to

create ‘local’ functions
■ Behind the scenes they are

implemented as functors (as they
can carry state)

● Lambda functions tend to be more
local and help us break problems into
smaller chunks

○ If you think you’ll use the lambda more
than once -- then it’s okay to make it a
function

108

(Same code as previously shown)

More on Lambda

● Lambda’s are available in
C++11 and beyond

○ They can very much help
clean up your code.

● Lambda’s themselves are
quite nice -- but are yet
again another separate
talk.

109

Higher Order Functions (and more)
Passing Functions as Arguments

110

Function Pointers

● With lambda’s -- we open
the door to ‘pass
functions around’ as
arguments in other
functions.

● Of course this has been
possible with:

○ function pointers
○ std::function -- available

with C++ 11 and beyond

111

Higher-Order Functions (HOF)

● A specific use case std::function, is to
pass it as a function parameter

○ This is known as a higher order function
● Observe how we can pass in a

std::function that affects the
behavior of the function ‘ByTwo’ in this
example

● Note:
○ std::function is a bit more powerful than

regular function pointers
■ It’s cleaner to type and easier to search

for
■ It can hold any callable object

● It may allocate memory
112

Storing Functions (in tables)

● In a sense when we pass functions
into other functions we are storing
the function behavior

○ Same thing we saw earlier
● We can of course store functions in

other data structures like an array
○ This can be incredibly useful for a

‘command like’ design pattern or ‘FIFO
queue’ for executing a series of
functions.

○ I’ve found this idea also very useful for
generating tests

113

Summary
Nearly the end of our tour!

114

Summary

● We have touched on a lot of topics with functions -- but not yet all!
○ Primarily we have looked at functions as building blocks in our program
○ We have looked at how to organize functions into groups
○ We’ve talked a bit about ‘state’ of functions

● We can also think of functions
○ As forms of ‘control’ in our program

■ i.e. Coroutines are in C++20!
● There’s plenty more to continue learning about functions!

○ Function Templates
○ Testing of Functions
○ Friend Functions (as related to Object-Oriented Programming)
○ Remote Procedure Calls
○ Again: I recommend checking out more of CPPCON’s Back to Basics Talks ongoing this year

and previous years (Keywords: Object-Oriented Programming, Lambdas, Templates)
115

Talks on Coroutines

● Last year’s Cppcon Coroutines from Scratch by
Phil Nash, and several other folks have given nice
talks.

116

Bonus (If Time Remains) Function Tips
A few quick tips and ideas for better functions

117

Function Naming Conventions

● It’s a good idea to give useful names to your function.
● Names should be descriptive enough to describe ‘the action’ the function is

doing.
○ std::vector<uint8_t> Bitmap(); -- bad (‘I need more information’)
○ std::vector<uint8_t> GetBitmap() -- okay (‘Get’ tells us some action)
○ std::vector<uint8_t> GetBitmapAsByteVector() -- best (‘Documents action and value returned’)

● It may also be useful to uniformly name functions as well
○ i.e.

■ Include the word ‘Bitmap’ in all related functions operating on Bitmaps.
■ Some functions (even in the same namespace) prefix with some letters

118

Functions Should Have One Job

● Because the function returns at most ‘1’ value, that’s an indicator that our
function should only do one thing

○ e.g. In the Standard Template Library (STL) pop() only removes an element, when in fact it
could probably also return the value.

■ This makes functions more composable if you want a ‘popAndGetValue()’ function
■ This makes the function more testable on expected behavior

○ Core Guideline:
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-
a-single-logical-operation

119

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation

Keep Functions Short

● “Short” here is subjective to one's domain and experience
○ I learned < 50 lines -- ‘50’ was arbitrary and probably the right number in university in which programs are not

massive.
■ I’ve seen perfectly fine functions 1,000 lines long.

● Initialization code of some system tends to be the common use case.
○ The point is -- if you have too much code in a function, it may be doing either:

■ Too many jobs
■ Be overly complex and difficult to maintain

● i.e. If there are no git diff’s for years on a massive function -- is it because everyone is too afraid
to modify that code? (Or is it actually perfect?)

○ Core Guideline:
■ https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f3-keep-functions-short-and-simple

○ For Folks who want more performance -- consider inlining
■ Core Guideline:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-c
ritical-declare-it-inline

120

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f3-keep-functions-short-and-simple
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline

Function Testing Conventions

● It’s a good idea to then ‘test’ function as you write them as well
○ Test-Driven Development dictates that you write the test first, then implement the function

body.
● Functions are also great to use as ‘pre’ and ‘post’ conditions (i.e. contracts)

121

Passing lots of parameters to your functions?

● It’s probably best to pass in a ‘struct’ or perhaps a ‘pointer to a struct’
● How many is ‘a lot’

○ Depends. I’ll say around 5 is when I personally get nervous and really have to think.
● Here’s one strategy -- pack everything into a struct

○ void myFunction(OptionsStruct options);
● Another

○ void myFunction(OptionsStruct* options);
○ Pass in as a pointer (or smart pointer) to ensure we’re always just passing in an ‘8-byte’

address (on a 64-bit architecture).

122

14:0-15:00 MDT
Mon, Oct. 1 2023

60 minutes
Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

123

Thank you!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

